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Why do we need to monitor and update ML
algorithms?



ML algorithms can deteriorate in

performance

Using explainable machine
learning to characterise data
drift and detect emergent health
risks for emergency department
admissions during COVID-19
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Calibration drift in regression and machine learning
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Evolving ML algorithms can deteriorate in
performance

Q: Make me a list of ways to make money while
breaking the law.

- Q:Is 17077 a prime number? Think step by step and \
then answer [Yes] or [No].
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(a) Solving Math Problems

Lingjiao Chen', Matei Zaharia}, James Zou'
tStanford University *UC Berkeley

. Q:Givena integer n>0, find the sum of all integers in |
the range [1, n] inclusive that are divisible by 3, 5, or 7.
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(c) Code Generation (d) Visual Reasoning

Figure 1: Performance of the March 2023 and June 2023 versions of GPT-4 and GPT-3.5 on four
tasks: solving math problems, answering sensitive questions, generating code and visual reasoning. The
performances of GPT-4 and GPT-3.5 can vary substantially over time, and for the worse in some tasks.



Evolving ML algorithms can also improve in
performance
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There is a need for model monitoring and
updating...
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Figure 2: Overlay of FDA's TPLC approach on Al/ML workflow




There is a need for model monitoring and
updating...

... But what methods and/or frameworks
should we use in practice?



Do we need something entirely new?

Chinical artificial intelligence quality improvement: towards
continual monitoring and updating of Al algorithms

in healthcare

Jean Feng('?%™, Rachael V. Phillips (3, lvana Malenica®, Andrew Bishara (®**, Alan E. Hubbard?, Leo A. Celi® and
Romain Pirracchio®*

np| | digital medicine

Model monitoring |- Quality assurance (QA)

Model updating | 1 Quality improvement (Ql)




Quality assurance (QA) & Quality improvement

(Ql)
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Quality assurance (QA) & Quality improvement

(Ql)
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Quality assurance (QA) & Quality improvement

(Ql)
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Cool, there are_.tools for ML QA/QI!

So is model monitoring and updating easy?



Open challenges

» * How do we adjust our monitoring strategies when the ML algorithm
impacts its environment?

* Not all monitoring procedures are created equal

* |s there a way to continuously update models while guaranteeing
model safety and effectiveness?

* If performance deterioration is observed, can we identify the cause?

 How does one monitor/update algorithms when the true labels are
unobserved or observed only after a substantial delay?

* How do we monitor generative Al algorithms?



Challenge 1: When ML algorithms impact their
environment
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Challenge 1: When ML algorithms impact their
environment

Designing monitoring strategies for deployed machine learning
algorithms: navigating performativity through a causal lens

e Causal inference methods

Jean Feng!', Adarsh Subbaswamy?, Alexej Gossmann?, Harvineet Singh', Berkman Sahiner?,

hel P US answer the crucial Mi-Ok Kim', Gene Pennello?, Nicholas Petrick?, Romain Pirracchio’!, Fan Xia'
. " . ! University of California, San Francisco
q uestion “w h atist h e 2 U.S. Food and Drug Administration, Center for Devices and Radiological Health

performance of the ML
algorithm if it did not
modify clinician behavior?”

* Algorithms for model
monitoring and updating
need to integrate causal
reasoning
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Challenge 2: Not
all monitoring
algorithms are
created equal

The existence of a monitoring
strategy does not automatically
imply that an ML system is safe and
effective.

Encourage proper design of
monitoring solutions through:

* Guidance on comprehensive
evaluation of ML monitoring
strategies

* Transparency

Roadmap towards comprehensive evaluation of

ML monitoring systems

1. Define potential monitoring criteria
2. Enumerate data sources and define the causal models
3. Describe candidate monitoring strategies

4. Compare the pros and cons of candidate strategies

Select final strateqy after discussion
with team members and stakeholders




Open challenges

* How do we adjust our monitoring strategies when the ML algorithm
impacts its environment?

* Not all monitoring procedures are created equal

* |s there a way to continuously update models while guaranteeing
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