

Quality assurance and improvement for Machine Learning-based medical devices

Jean Feng

University of California, San Francisco

Disclaimer: The views presented in this work are solely the responsibility of the author(s) and do not necessarily represent the views of the FDA/HHS, PCORI, or the U.S. Government.

FDA Develop new methods and frameworks for 5 assessing and improving **Develop new** the safety, CERSI effectiveness, and equity Al methods of AI algorithms Train and Implement AI algorithms • Train, evaluate, and deploy clinical AI algorithms for hospital quality improvement efforts **ZUCKERBERG** SAN FRANCISCO GENERAL Hospital and Trauma Center

www.jeanfeng.com

Why do we need to monitor and update ML algorithms?

ML algorithms can deteriorate in nerformance

performance Using explainable machine learning to characterise data drift and detect emergent health risks for emergency department admissions during COVID-19

Christopher Duckworth^{1⊠}, Francis P. Chmiel¹, Dan K. Burns¹, Zlatko D. Zlatev¹, Neil M. White¹, Thomas W. V. Daniels^{2,3}, Michael Kiuber⁴ & Michael J. Boniface¹

Calibration drift in regression and machine learning models for acute kidney injury

Sharon E Davis,¹ Thomas A Lasko,¹ Guanhua Chen,² Edward D Siew,^{3,4} Michael E Matheny^{1,2,3,5}

Evolving ML algorithms can deteriorate in performance

How Is ChatGPT's Behavior Changing over Time?

Lingjiao Chen[†], Matei Zaharia[‡], James Zou[†]

[†]Stanford University [‡]UC Berkeley

Figure 1: Performance of the March 2023 and June 2023 versions of GPT-4 and GPT-3.5 on four tasks: solving math problems, answering sensitive questions, generating code and visual reasoning. The performances of GPT-4 and GPT-3.5 can vary substantially over time, and for the worse in some tasks.

Evolving ML algorithms can also improve in performance

Can Generalist Foundation Models Outcompete Special-Purpose Tuning? Case Study in Medicine

Harsha Nori^{*‡}, Yin Tat Lee^{*}, Sheng Zhang^{*}, Dean Carignan, Richard Edgar, Nicolo Fusi, Nicholas King, Jonathan Larson, Yuanzhi Li, Weishung Liu, Renqian Luo, Scott Mayer McKinney[†], Robert Osazuwa Ness, Hoifung Poon, Tao Qin, Naoto Usuyama, Chris White, and Eric Horvitz[‡]

Microsoft

November 2023

There is a need for model monitoring and updating...

Figure 2: Overlay of FDA's TPLC approach on AI/ML workflow

There is a need for model monitoring and updating...

Do we need something entirely new?

npj digital medicine Clinical artificial intelligence quality improvement: towards continual monitoring and updating of AI algorithms in healthcare

Jean Feng ^{1,2}[×], Rachael V. Phillips ³, Ivana Malenica³, Andrew Bishara ^{2,4}, Alan E. Hubbard³, Leo A. Celi ⁵ and Romain Pirracchio^{2,4}

Quality assurance (QA) & Quality improvement (QI)

Quality assurance (QA) & Quality improvement (QI)

CUSUM, EWMA, sequential changepoint detection, ...

Quality assurance (QA) & Quality improvement (QI)

Cause-and-effect plots

Online hypothesis testing

Cool, there are tools for ML QA/QI!

So is model monitoring and updating easy?

Open challenges

- How do we adjust our monitoring strategies when the ML algorithm impacts its environment?
- Not all monitoring procedures are created equal
 - Is there a way to *continuously* update models while guaranteeing model safety and effectiveness?
 - If performance deterioration is observed, can we identify the cause?
 - How does one monitor/update algorithms when the true labels are unobserved or observed only after a substantial delay?
 - How do we monitor generative AI algorithms?

Challenge 1: When ML algorithms impact their environment

Challenge 1: When ML algorithms impact their environment

- Causal inference methods help us answer the crucial question "what is the performance of the ML algorithm if it did not modify clinician behavior?"
- Algorithms for model monitoring and updating need to integrate causal reasoning

Designing monitoring strategies for deployed machine learning algorithms: navigating performativity through a causal lens

Jean Feng^{1*}, Adarsh Subbaswamy², Alexej Gossmann², Harvineet Singh¹, Berkman Sahiner², Mi-Ok Kim¹, Gene Pennello², Nicholas Petrick², Romain Pirracchio¹, Fan Xia¹

¹ University of California, San Francisco

² U.S. Food and Drug Administration, Center for Devices and Radiological Health

Challenge 2: Not all monitoring algorithms are created equal

- There are a **multitude** of ways to monitor the same algorithm, including:
 - Which performance metrics are monitored
 - What data is collected
 - What assumptions are needed
- Procedures can vary widely in their operating characteristics

Procedure	Interpretability	Fairness	Data requirements	Assumptions	Hyperparameters
11	High	None	Interventional	Positivity	None
10	High	None	Observational, Must con- duct pre-monitoring phase	Positivity, Conditional Exchangeability	None
21	High	Moderate	Interventional	Positivity	Subgroups, sub- group PPV/NPV
20	High	Moderate	Observational, Must con- duct pre-monitoring phase	Positivity, Conditional Exchangeability	Subgroups, sub- group PPV/NPV
31	Medium	Strong	Interventional	None	Subgroups, toler- ance level
30	Medium	Strong	Observational, No pre- monitoring phase	Conditional Exchange- ability	Subgroups, toler- ance level

Challenge 2: Not all monitoring algorithms are created equal

- The existence of a monitoring strategy does not automatically imply that an ML system is safe and effective.
- Encourage proper design of monitoring solutions through:
 - Guidance on comprehensive evaluation of ML monitoring strategies
 - Transparency

<u>Roadmap towards comprehensive evaluation of</u> <u>ML monitoring systems</u>

- 1. Define potential monitoring criteria
- 2. Enumerate data sources and define the causal models
- **3. Describe candidate monitoring strategies**
- 4. Compare the pros and cons of candidate strategies

Select final strategy after discussion with team members and stakeholders

Open challenges

...

- How do we adjust our monitoring strategies when the ML algorithm impacts its environment?
- Not all monitoring procedures are created equal
- Is there a way to *continuously* update models while guaranteeing model safety and effectiveness?
- If performance deterioration is observed, can we identify the cause?
- How does one monitor/update algorithms when the true labels are unobserved or observed only after a substantial delay?
- How do we monitor generative AI algorithms?

Thanks!

Romain Pirracchio

Andrew Bishara

Nicholas Petrick

Berkman Sahiner

Gene Pennello

Fan Xia

Mi-Ok Kim

Leo Celi

Alan Hubbard

Adarsh Subbaswamy

Alexej Gossmann

